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Abstract. Large scale optimisation problems are frequently solved using stochastic methods.
Such methods often generate points randomly in a search region in a neighbourhood of the
current point, backtrack to get past barriers and employ a local optimiser. The aim of this

paper is to explore how these algorithmic components should be used, given a particular
objective function landscape. In a nutshell, we begin to provide rules for efficient travel, if we
have some knowledge of the large or small scale geometry.
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1. Introduction

When selecting a stochastic algorithm to solve a practical problem it is use-
ful to have some qualitative knowledge about the objective function land-
scape. In practice, this landscape knowledge may come from questioning
context experts, a closed form of the objective function or as a by-product
of using a particular algorithm on instances of the problem.
The aim of this paper is to explore how landscape knowledge can be

used sensibly to tune a stochastic search algorithm so that it runs effi-
ciently. Underpinning the work is the assumption that moves broadly
downward, on some scale, will lead to a global minimum value (although
we acknowledge that such a strategy will not always be appropriate for
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finding the global minimum). For example, a minimisation problem is
analogous to descending a mountain shrouded in mist; following a ridge
downward would seem a sensible strategy and this demands that we not
step too far from the ridge path. Such strategies, which correspond to algo-
rithm parameter settings, are of practical interest. Once, for example, simu-
lated annealing with a given setting of parameters is known to be
successful, then such settings may be used to solve variants of the problem
efficiently.
There is an extensive array of stochastic global optimisation heuristics

described in the literature, examples being [2, 4–6, 8, 10, 11]. Commonly,
these use limited search regions, some amount of backtracking (acceptance
of worse values) and local optimisation. Here we provide initial guidelines,
by no means exhaustive, describing conditions under which each is worth-
while. That is, we show how to tailor them to the particular needs of an
objective function, in order to efficiently reach the global optimum.
This aim is achieved in the following way. We set up a family of objec-

tive functions which are designed to capture the features which typically
resist ready movement of an algorithm to the global minimum: high fre-
quency and low frequency oscillation, multiple minima, saddles, valleys,
and high dimension. These features are controlled using a small set of
parameters. With these as the targets of our interest, we then set up a fam-
ily of algorithms in corresponding fashion. In these we can control the size
of the local search region, the ease of backtracking and the readiness to do
a local search. Three parameters control these aspects of the algorithm.
The No Free Lunch Theorem [13] announced that all global optimisation

algorithms have the same performance, when averaged across all objective
functions. The vision of this paper has been a reaction to that result: given a
landscape in the parametric family, to identify an algorithm in the paramet-
ric family well adapted to searching that landscape. Necessarily that vision
has shrunk as work progressed; the paper now initiates the connection. It is
hoped that this paper will stimulate future work which will progressively
demonstrate the links between landscape and algorithm. The main contribu-
tions of this paper are to consider two simple landscapes (valleys and ridged
slopes) and to describe algorithms which descend them efficiently. In doing
this, the paper initiates a theory of algorithm design; at present the choices
such design might render objective are made in an ad hoc way.
The paper is organised as follows. In Section 2 we set up the global opti-

misation environment, describing the objective functions and their parame-
terisation, together with a generic stochastic algorithm controlled by three
parameters. In Section 3 we discuss the matching of algorithm parameter
to landscape feature, using both simulation and theoretical analysis, focus-
ing on search neighbourhood and backtracking. Section 4 then considers
the role of local search. Section 5 concludes the paper with a summary.
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2. Global Optimisation Environment

Global optimisation requires an objective function and an algorithm. In
this section we capture critical features of objective functions in a parame-
terised family, then do the same for a family of algorithms.

2.1. OBJECTIVE FUNCTION LANDSCAPES

Our aim was to produce a family of functions that exhibited landscape fea-
tures that affect the performance of a stochastic global optimisation algo-
rithm. Features could be at a high level (representing the coarse overall
features) or at a low level (which can be viewed as noise or perturbations
not affecting the overall shape, but possibly interfering with an algorithm’s
performance). As outlined in the preliminary discussion paper, these fea-
tures include the modality, the size of basins of attraction of the local min-
ima and the magnitude of noise.
The family is built using functions defined on [0,1]� [0,1] (see Figure

1(a) for an example). This two-dimensional family captures some of the
above-mentioned features by being built up of a one-dimensional high level
base function of x (the first coordinate of a point in the domain) as illus-
trated in Figure 1(b), with perturbations, in the form of added fixed fre-
quency oscillations, as illustrated in Figure 1(c). The second coordinate y
comes into play to provide a valley which cuts through the oscillation bar-
riers to provide a less obstructed narrow path, and as well provides a gen-
tle curvature in the second direction.
Full details of the construction of the family are given in Appendix A.

In brief, however, the functional form is

fðx; yÞ ¼ fbaseðxÞ þ oðxÞgðx; yÞ þ ðy� 1=2Þ2

10
where fbaseðxÞ is as pictured in Figure 1(b), parameterised by BasinRatio
and LevelRatio�. The function oðxÞ provides the low level perturbations in
the form of oscillations. It is parameterised by OscillationNumber, Oscilla-
tionWidth and OscillationHeight as illustrated in Figure 1(c). Pulse oscilla-
tionsy were chosen so that width and height were independent; adding such
a perturbation to the high level function creates obstructions that are inde-
pendent of the base function. The function g is equal to one except over
an oscillating curve in the plane where it goes to a value Sr less than one.

* BasinRatio is the ratio of the width of the right highlevel basin to the width of the left highlevel

basin. If this is zero, then the high level function has only one local minimum and is unimodal. LevelRatio

is the ratio of the escape height from the right high level basin to the escape height from the left high level

basin. If the ratio is less than one, the left one is global, if the ratio equals one there are two global

minimisers and if the ratio is more than one, the right one is global.
ySmooth oscillations were tried and there was little difference in the experimental results.
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The effect is to lower f over this region and provide a narrow valley which
leads to the global optimum. For x values at the peaks of the oscillations,
moving in the y direction is walking on a ridge which drops down to the
bottom of the valley (thus creating a saddle). This valley function is pa-
rameterised by SaddleRatio, Sr, the ratio of the height of the pass to the
height of the ridge, SaddleWidth, the width of the valley and SaddleDev
which gives the relative deviation from the centre line. When SaddleDev is

Figure 1. A typical landscape is shown in (a). The high level function of the first variable x is shown in

(b), together with the added oscillation in (c). Parameters controlling the functions are also described.
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zero, the valley is straight along y ¼ 1=2, and when SaddleDev is 0.5 it
moves between y ¼ 0 and 1.
One feature that is missing from our family is the dimension of the

domain. This is known to be important, but it was thought that some of
the ‘‘curse of dimensionality’’ could still be captured using the two-dimen-
sional family. For example, using a very narrow valley which almost can-
celled out very many high obstructions could mimic difficulties found in
higher dimensional examples. This was observed to some extent, and it
became apparent that valleys are an important phenomenon. In Section 3,
however, we explore one very simple high dimensional example,

fðx1; x2; . . . ;xnÞ ¼
�sx1; when jxij < v; i ¼ 2; . . . ;xn
1; otherwise

�

In general, however, the two-dimensional definition can be extended to cre-
ate functions on the unit hypercube using

fðx1; y1;x2; y2; . . . ;xn; ynÞ ¼
Xn
i¼1

fðxi; yiÞ

2.2. STOCHASTIC ALGORITHMS

Three fundamental properties of a stochastic global optimisation algorithm
were chosen for study:

1. The size of the search region.
2. The ability to backtrack.
3. The use of local search.

The need to maintain simplicity at this early stage of the investigation
made it desirable that each factor should be controlled by a single parame-
ter. In future, a, t and p will control search region, backtracking and local
search, respectively. A choice for each of these parameters determines a
particular realisation of the algorithm. The role of each parameter is now
described, followed by a formal description of the generic algorithm. As
the parameters vary, the algorithm moves over an ‘‘algorithm space’’; this
will be pictured and discussed.
First, we describe the search region parameter a, which varies from zero

to two. The search region on any iteration is chosen to be a hypercube,
centred on the current point, of radius r. Recall that the objective function
domain is also, in general, a hypercube, with width one in each direction.
It would be simplest to use a radius r for the search region of a=2 at each
iteration, but a richer one-dimensional mechanism was preferred. For the
search parameter a, r is chosen uniformly on

½0; a�; for 0OaO1

½a� 1; 1�; for 1 < aO2
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Note, the expected value of r is a=2. This process allows a wide range of
search styles. When a ¼ 0, the algorithm chooses an initial point and then
remains there. When a ¼ 2, the search region at each iteration is the entire
domain. For intermediate values of a, values close to the current point are
favoured but it is still possible to search broadly. Note that this flexibility
is precluded if we always choose r ¼ a=2.
Second, we discuss backtracking. Parameter t 2 ½0;1�, a temperature,

controls this via a standard Boltzmann condition. Finally, parame-
ter p 2 ½0; 1� controls use of local search, in that at each iteration a
local search is used with probability p. The algorithm is now presented
formally. It is assumed that a 2 ½0; 2�, t 2 ½0;1� and p 2 ½0; 1� have been
selected.

GENERIC STOCHASTIC ALGORITHM – FOR a, t AND p
Step 1. Set i ¼ 0. Generate X0 uniformly on the domain and evaluate

fðX0Þ.
Step 2. (i) Choose a search radius r, using search parameter a.

(ii) Select Xnew uniformly in the intersection of the domain with
a hypercube of radius r centred on Xi.

(iii) With probability p, run a local search from Xnew, replacing
Xnew with the local minimiser.

(iv) Set Xiþ1 ¼ Xnew with probability min 1; exp fðXiÞ�fðXnewÞ
t

� �n o
else set Xiþ1 ¼ Xi.

Step 3. If a stopping criterion is met, stop. Otherwise, increment i and
return to Step 2.

For different a, t and p the algorithm takes on different character, as
summarised in the ‘‘cheese’’ of algorithms pictured in Figure 2.
As a increases (so as we move from left to right in the cheese), local gen-

eration of the next point gives way to global generation of the next point.
As t increases (so as we move from the front face to the back face), the
propensity to backtrack increases. Finally, as p increases (so as we move
from low to high in the cheese), more local search is added. Note that
when a ¼ 2 and p is fixed, the algorithms produced as t varies are essen-
tially equivalent; the raw domain sequences are the same, since Xnew is
independent of Xi. Certain vertices and edges are broadly familiar. In par-
ticular, the following table explains the marked points in Figure 2.
The aim now will be to tailor the algorithm to the geometry of the

objective function. We conclude this section by remarking that our simpli-
fied algorithms do not allow parameters a, t and p to vary with the itera-
tion; this should be allowed in real algorithms.
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3. Matching Algorithms to Functions: Role of Search Size and Temperature

Our stochastic optimisation method uses a homogeneous (the distribution
does not depend on the iteration number) Markov (the distribu-
tion depends only on the current location) random walk to explore the
domain. When t ¼ 0, only steps which decrease the objective function
value are used. When t ¼ 1, however, the random walk in the domain
takes no account of the landscape, and movement into a particular region
is a consequence only of the starting position and the random walk
mechanism.
Regardless of the overall assumption that the landscape leads in the right

direction, just how good is the algorithm at downward movement? Our
aim in this section is to determine, for some typical landscape types, how
parameters a, t and p should be set in order to move downwards efficiently.
The original aim (during the workshop week) was to match points of the
objective function space to points in the algorithm space. We have chosen

Figure 2. The space of algorithms: parameter a controls the extent of the search, parameter t

controls backtracking using a Boltzmann condition and parameter p is the probability with

which a local search is used. Familiar algorithms can be recognised within the ‘‘cheese’’; for

example, multistart corresponds to the top right corner where ða; t; pÞ ¼ ð2;1; 1Þ.

Abbreviation Explanation

Point Single point, repeated

Point + LS Single point followed with a local search, repeated

IHR Improving hit-and-run [14]

IHR + LS Improving hit-and-run with local search

HS Hide-and-seek [7]

HR Hit-and-run [9]

HR + LS Hit-and-run with local search

IPRS Improving pure random search

IPRS + LS Improving pure random search with local search

PRS Pure random search

MS Multistart [2]
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a lesser objective since that time, namely to match certain non-global
aspects of objective function space to values of parameters. In particular,
we consider two situations: movement down a valley and movement down
a slope with obstructions. The pattern is to develop some theoretical
results, then to illustrate them with simulation. Throughout this section we
assume that p ¼ 0, so there is no local search.

3.1. DESCENDING IN A VALLEY

High dimensional problems, subject to constraints, can require us to follow
a low dimensional valley to the global minimum. We address the question
of how to follow this valley, once we are in it, beginning by visualising a
steep-walled but straight valley. We are able to move to a point in our
local neighbourhood and scan for the global minimum. If we choose too
small a neighbourhood then we will not move far at each stage. On the
other hand, if our search neighbourhood is too large, we will spend a lot
of time scanning points outside the valley; there is evidently an optimal
search radius. We will find, for a valley as shaded in Figure 3, that the
optimal half-width (or radius) of the search box is precisely the width of
the valley. As the dimension of the domain increases, the optimal radius
reduces. Recall that the expected value of the half-width, in the generic
algorithm, is a=2, so we need to keep in mind that the optimal algorithm
parameter is twice this optimal half-width.
More formally, to define a valley of half-width v in Rn consider the land-

scape of objective function f : Rn �! R [ f1g, depending only on the first
coordinate, given by

Search Box

Valley

w

vz

Figure 3. The valley, of half-width v, is shown shaded, for n ¼ 2. The search region, centred on

z in the valley, has half-width w.
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fðxÞ ¼ gðx1Þ; when jxij < v; i ¼ 2; . . . ; n
1; otherwise

�

where g is any function from R to R. The points of the domain having
finite value form what we term a valley of half-width v. This may seem
artificial, but it is typical of how a constrained optimisation problem with
a low dimensional feasible region essentially comes from a high dimen-
sional unconstrained optimisation problem on a box, via use of a penalty
function. In the special case where g is linear (with gðx1Þ ¼ �sx1 with
s > 0), we shall calculate the expected movement to the right, conditional
on staying in the valley (which we assume is the direction of decreasing g).
It is reasonable to suppose that the time before getting into the valley is
inversely proportional to the relative size of the valley and that this does
not vary over a wide range of a values. We find, unsurprisingly, that t ¼ 0
is best, as higher temperatures will only lower the expected improvement.
Finding the optimal a is more interesting.
We begin with a proposition that describes the expected movement down

a valley (recall that this is determined by an objective function whose
domain is Rn).

PROPOSITION 3.1. Let v be the half-width of the valley and w be the half-
width of the search box. Without loss of generality, let z ¼ ð0; z2; . . . ; znÞ be
the current point in the algorithm, where zi is assumed to come from a uniform
distribution on ½�v; v� for i ¼ 2; . . . ; n. Then the expected movement in the first
coordinate at the next iteration is

Vn�1 1

2w

Z w

�w
xminf1; expððgð0Þ � gðx1ÞÞ=tÞgdx

where

V ¼ 1

2vw

Z v

0

LðxÞdx
� �

¼
1� w

4v when wO2v
v
w otherwise

�

and

LðxÞ ¼
2w; wOv� x

wþ v� x; v� x < wOvþ x

2v; vþ x < w

8><
>:

Proof. The expected movement in the first coordinate is the product of the
probability that we hit the valley and the expected improvement given that
we do hit the valley. We now show that these quantities correspond to the
two terms in the displayed expression in the proposition statement. We begin
by considering the probability of hitting the valley. For fixed i, i ¼ 2; . . . ; n,

P½ jxij < v j current point ith coordinate is zi�
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is LðziÞ=ð2wÞ since LðxÞ is the length in the valley of a search box of half-
width w, centred at x. Since zi can be assumed to be drawn uniformly on
½0; v�, we define

P½jxij < v� ¼ 1

v

Z v

0

P½jxij < vj current point ith coordinate is zi�dzi

¼ 1

2vw

Z v

0

LðziÞdzi ¼ V

The integral giving V was calculated in Maple. Now, since x1, the value of
the first coordinate after the iteration, can be any value in ½�w;w�

P½Hit valley� ¼ P½jx2j < v� � � � � � P½jxnj < v� ¼ Vn�1

Finally, for the expected value of the movement, conditional upon hitting
the valley, we have

E½x1jHit valley� ¼
Z w

�w
x1

minf1; expððgð0Þ � gðx1ÞÞ=tÞg
2w

dx1

since the density of X1 is minf1; expððgð0Þ � gðx1ÞÞ=tÞg=ð2wÞ, the uniform
distribution on the interval ½�w;w� tempered by the acceptance probability.

(

We turn now to explore the extreme cases where t ¼ 0 and t ¼ 1, and
then the intermediate case.

Case t ¼ 0.
We begin with an immediate consequence of Proposition 3.1.

COROLLARY 3.1

ðiÞ PðHit valleyÞ ¼ Vn�1 ¼ 1� w
4v

� �n�1
when wO2v

v
w

� �n�1
otherwise

(

(ii) When gðx1Þ ¼ �sx1 (with s > 0) and t ¼ 0 the expected movement, con-
ditional upon hitting the valley, is w=4.

Proof. The proof involves routine integrations. (

Note that in (ii), for the linear valley, the expected improvement does
not depend on s or the value of the first coordinate of the starting point.
Graphs of the expected movement for this special case (which we call the
linear valley) were created in Maple, using the expression given in Proposi-
tion 3.1, and they agree closely with results produced by simulation (see
Figure 4). The remainder of this section deals only with the linear valley.
As the expressions for the probability of hitting the valley and the
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expected movement conditional upon hitting the valley are explicitly
known (Corollary 3.1), we have the following result which characterises the
optimal w shown in Figure 4.

PROPOSITION 3.2. For dimension greater than two, gðx1Þ ¼ �sx1
(with s > 0) and t ¼ 0, the optimal w is 4v=n which gives expected movement of

v

n

n� 1

n

� �ðn�1Þ
� v

ðn� 1=2Þe
For dimension two, the maximum expected movement is first achieved at this
optimal w value and is constant for larger values.

Proof. For dimension greater than two, the optimum half-width is in the
region where the probability of hitting the valley is ððv� w=4Þ=vÞn�1 and
the expected movement conditional upon hitting the valley is w=4. The
product gives the expected movement in the valley. This is maximised at
the value stated in the proposition. (

More generally, it is possible to define a valley of dimension d (1OdOn)
as that part of the domain with finite objective function value for

fðxÞ ¼ gðx1; . . . ;xdÞ; when jxij < v; i ¼ dþ 1; . . . ; n
1; otherwise

�
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Figure 4. The smooth curves plot the expected movement (Proposition 3.1) of the valley objec-

tive function when gðx1Þ ¼ �sx1, as w changes, for a given dimension n. The dimension takes

the values 2, 4, 6, 8, 12 and 20 (from top to bottom), with v ¼ 5 and t ¼ 0. Note that the opti-

mal search radius w reduces as the dimension increases, as does the optimal movement. Overlaid

on each curve is a simulation of the same situation.
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where g is any function from Rd to R. We then have the following result.

PROPOSITION 3.3. For dimension n greater than d and the simple slope
function gðx1; . . . ; xdÞ ¼ �sx1, the optimal w is 4v=ðn� dþ 1Þ, giving
expected movement in the first coordinate of

v

n� dþ 1

n� d

n� dþ 1

� �n�d
� v

ðn� dþ 0:5Þe
For dimension n ¼ d, the maximum expected movement occurs at this opti-
mal w value and is constant for greater values.

Proof. This proof is the same as for Proposition 3.2, except that n� 1 is
replaced by n� d. (

Case t ¼ 1.
Consider the case where n ¼ 1. When t ¼ 0, the landscape is homoge-

neous and the random walk is only in one direction, so the expected move-
ment is a reasonable measure of performance; the expected number of
iterations to first move a unit distance to the right is inversely proportional
to the expected movement and hence w (see [1]). When t ¼ 1, however, we
have an unbiased walk, with expected movement of zero! For such a walk,
the expected number of iterations to first move a unit distance to the right
is inversely proportional to the variance and hence w2.

0  0.5 1 1.5 2 
10

0

10
2

10
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10
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 | 
t 

= 
0)

   
   

   
   

  E
(N

 | 
t 

= 
∞

) 

n = 1

n = 1

n = 20

n = 20

Figure 5. The expected number of iterations N to move unit distance to the right, for the linear

valley (with s ¼ 1), against w=v, as the dimension n varies. The dark curves correspond to the case

where t ¼ 0 and the light curves to t ¼ 1. For each temperature, n takes the values 1, 2, 3, 5, 10

and 20. For n ¼ 2 and t ¼ 0 note that N reduces as w increases, consistent with the increased

movement shown in Figure 4 as w increases. The graphs were produced using v ¼ 0:1 (so w ran-

ged from 0 to 0.2), representative of small v, and allowing the boundary effects in the discrete

approximation to be ignored.
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These curves, found by discretely approximating the continuous walk of
our algorithm on R, are shown in Figure 5 and labelled with n ¼ 1. (Note,
to avoid boundary effects, points that would go outside the interval are
clumped with the appropriate end point.) The curves in Figure 5 for higher
dimensions were found by dividing the value of the curve for n ¼ 1 by the
probability of hitting the valley.
Note the functional form of these curves gives, for t ¼ 0, the optimal

performance when w=v ¼ 4=n for nP2 (as in Proposition 3.2 also). For
t ¼ 1, optimal performance occurs when w=v ¼ 8=ðnþ 1Þ for nP3. (The
expected number of iterations to move unit distance to the right is inver-
sely proportional to w2, while the probability of hitting the valley is
ððv� w=4Þ=vÞn�1. Taking the product, differentiating and solving gives the
stated result.)
Two results here are noteworthy for the two sets of graphs in Figure 5.

First, for fixed t, as n increases the optimal w decreases. Thus a narrower
search is better as the dimension increases. Second, for n fixed, t ¼ 0 has a
smaller optimal w than t ¼ 1. Thus a narrower search is also better as
backtracking decreases.

Case 0OtO1.
In this case the expected number of iterations to move unit distance to

the right runs monotonically between the two extremes given by the curves
in Figure 5. The transition, however, is quite sudden, as illustrated in
Figure 6. Over the interval from t ¼ 0 to t ¼ t0, where t0 ¼ s=30, the
expected number of iterations to move one unit to the right is comparable

-3 -2 -1 0 1 2 3 4
10

1

10
2

10
3

10
4

 log
10

t

E
(N

)

t =
 t 0 =

 s
/3

0

t =
 t ∞

 =
 s

Like t = 0 Like t = ∞

Figure 6. The graph shows the expected number of iterations to move one unit to the right,

against the temperature t on a log scale. As temperature increases, the algorithm becomes less

efficient, but it does so by moving from a t ¼ 0 plateau to a t ¼ 1 plateau between

t ¼ t0 ¼ s=30 and t ¼ t1 ¼ s. This phenomenon was noted for a range of s and w values. Here

n ¼ 1, w ¼ 0:04 and s ¼ 1.
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to that for t ¼ 0; for tPt1, where t1 ¼ s, the behaviour is comparable to
that at t ¼ 1.

3.2. DESCENDING A SLOPE WITH OBSTRUCTIONS

We turn now to explore landscapes with obstructions on a linear slope; the
expected number of iterations required to improve by a unit amount in the
first coordinate will be used to compare algorithm configurations.
We begin by defining a linear slope with obstructions. The slope runs

linearly from top left to bottom right, and then obstructions of the type
shown in Figure 1(c) are added, OscNumber of them. The result is pictured
in Figure 7.
We allow ourselves two ways to get past obstructions: raising the tem-

perature t or using a large enough a. Each option has its merits, we shall
find, depending on the character of the landscape.
A critical measure of the character of the landscape which we shall use

is the ‘‘effective barrier width’’ (EBW), defined as min(OscWidth/OscNum-
ber,OscHeight/s). This is most easily seen in Figure 7. In this context, Osc-
Width/OscNumber provides the horizontal width of the barrier while
OscHeight/s provides the horizontal distance from the left of the barrier to
the point to the right where the barrier again falls to the level at the left of
the barrier. Thus EBW measures the smallest jump that must be made,
starting at the left of the obstruction, moving from left to right, before
returning to a lower level.
In the previous section we saw that for an unobstructed valley w ¼ 4v=n

is best with t ¼ 0. For the obstructed landscape, if this width is enough to
pierce the obstruction at the same time it should be used. That is, if w is
bigger than EBW, then the performance is the same as if the function was

Figure 7. A cross-section, down the fall-line, of a slope with obstructions.
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not obstructed, so t ¼ 0 is best. On the other hand, if w is less than EBW
then the situation is more complicated.
We begin by exploring the relationship between the expected number of

iterations to move unit distance to the right, on a slope with obstructions,
and temperature (Figure 8). We will then bring in the factor of obstruction
height (Figure 9). All results in this section are found using a discrete
approximation to the continuous walk, though we consider that the quali-
tative conclusions we draw will hold over a broad range of similar
landscapes.
Figure 8 shows how the ability to move down a slope with obstructions

varies with temperature, when w is less than EBW. Observe in Figure 8
that there are two key temperatures which depend on barrier height. Tem-
perature t < tc, tc ¼ OscHeight=30 is too cold to jump the barriers and so
EðNÞ is infinite (the graphic was made using Matlab, programmed to plot
‘‘infinity’’ at 107). Temperature t > th, th ¼ OscHeight, is hot enough to
jump barriers as if no obstruction is present and EðNjobstructed
functionÞ ¼ EðNjunobstructed functionÞ (as on the right in Figure 6).
Figure 9 builds on the graphic just discussed. All configurations are

unchanged, but the height of the obstruction is allowed to vary, taking
values of 0, 0.1 (as before), 1 and 10, so tc and th move with respect
to t0 and t1. The lowest curve shows the performance in the unobstructed
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Figure 8. The relationship between expected number of iterations to move a unit horizontal dis-

tance down a slope with obstructions, and temperature. Here n ¼ 1, s ¼ 1 and both the width

and height of the obstruction are 0.1, so EBW is 0.05, since OscNumber is 2. The half-width of

the search region is w ¼ 0:04, less than EBW. On the left, the temperature is too cold to jump

the obstructions, so the number of iterations is high. As temperature climbs, it reaches an opti-

mal value for the algorithm. As temperature climbs further the algorithm becomes less effective,

taking little note of the landscape.
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case. The effect of an obstruction is to force this curve to go to infinity as
t goes to zero. The obstructed curves asymptotically approach the unob-
structed curve. The region of contact varies with the height of the obstruc-
tion. For very low obstructions this contact is in the region t < t0, for
moderate obstruction size this contact is in the transitional region and for
large obstructions this contact is in the region t > t1.

4. Matching Algorithms to Functions: Role of Local Search

In this section we provide an initial result indicating when local search is
worthwhile. Given a local minimiser (this could be a theoretical optimiser
that finds the lowest point in the ‘‘geometric’’ basin, or a practical method
using a given step size), we define the ‘‘flattened’’ function as

f cðxÞ ¼ fðxlocalðxÞÞ

where xlocalðxÞ is the local minimiser found when starting at x. This idea
has been used by others, for example by Wales and Doye in applying simu-
lated annealing to the solution of Lennard–Jones problems [12].
We have seen in the previous section that width of valleys and size of

oscillation barriers are some landscape features which need to be consid-
ered when choosing reasonable values for the parameters a and t. The deci-
sion as to whether to use a local method (that is, setting p to be non-zero)
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depends on properties of f c. If the local method is used at each step, we
are really applying the basic stochastic optimisation method to f c. For this
reason, it is the size of the valleys and barriers of the flattened function
that are the important features. Of course evaluation of f c is more costly
than evaluation of f, so it is a question of cost versus benefit.
A result in this area is possible and presented now. For a given function,

we can give the condition that determines whether multistart or pure ran-
dom search will be more efficient.

THEOREM 4.1. Let a be the probability measure of the level set of the
acceptable global minima ðthat is, the set of points that are acceptable
answersÞ. Let b be the probability measure of the level set of the acceptable
global minima of f c. Let one evaluation of f c be equivalent to say Nc evalua-
tions of f. Then multistart is better than pure random search if and only if

NcO
logð1�bÞ
logð1�aÞ � b=a.

Proof. For a given number of function evaluations, say N, we can do N
iterations of pure random search. The probability of finding a point in the

acceptable level set around the global minimum is 1� ð1� aÞN. For this
number of function evaluations, we can do N=Nc iterations of multistart,
which will have probability of success 1� ð1� bÞN=Nc . The second proba-
bility is greater than the first precisely when the condition of the theorem
holds. (

This result can be conveniently illustrated using the objective functions of
Section 2. A wide barrier width favours multistart, since then the catchment
(measured by a) for the local search is large. So if we use an objective func-
tion with parameters L to F, as ordered in Appendix A, of (1.1, 3, 3, 1,
0.9999, 1, 0.5, 0.5, 3) and Nc ¼ 20 then we find that pure random search, so
the generic algorithm with parameters ða; t; pÞ ¼ ð2;1; 0Þ, performs worse
than multistart, the generic algorithm with parameters ða; t; pÞ ¼ ð2;1; 1Þ.
On the other hand, narrow barrier widths favour pure random search.

So for the objective function with parameters (1.1, 3, 3, 1, 0.1, 1, 0.5, 0.5,
3) and Nc ¼ 20, pure random search performs better than multi-
start. Here we have altered OscWidth; for values less than 0.9 pure
random search is superior, while multistart is superior for values higher
than 0.9.

5. Summary and Future Directions

The central aim of this paper has been to understand how a stochastic glo-
bal optimisation algorithm can be tuned to the landscape of the objective
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function. The initial vision of the research group was to find a mapping
from a parameterised family of objective functions (exhibiting typical recal-
citrant features) to a parameterised family of stochastic search algorithms
(exhibiting typical behaviour). As a step towards this end, simple such fam-
ilies were set up in Section 2 of this paper. As the difficulty of the goal was
realised, however, the aim narrowed to one of establishing some links from
objective function features to algorithm type. In particular, in Section 3 we
investigated how to tune an algorithm to efficiently move down a slope,
first with no obstructions, then with obstructions. In each case we found
there are optimal algorithm parameter settings. Finally, in Section 4, we
explored the role of local search.
Much remains to be researched. Questions for the future include:

� Is it really possible to capture key features of objective functions in a
parameterised family?
� Is is possible to capture key features of a wide range of stochastic algo-
rithms in a parameterised family?
� Are there universal rules linking the two?

This paper has scratched the surface of a challenging problem in the area
of global optimisation.
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Appendix A

This appendix provides a detailed description of the parametric family of
objective functions introduced in Section 2.1.

Input parameter Definition

L LevelRatio: Ratio of escape height out of right high level basin to escape height

out of left high level basin

B BasinRatio: Ratio of width of right high level basin to width of left high level basin

Or OscRatio: Number of oscillations in the left high level basin

Oh OscHeight: Amplitude of pulse oscillations

Ow OscWidth: Width of pulse oscillations

Sr SaddleRatio: Ratio of height of saddle to height of ridge

Sw SaddleWidth: Width of saddle

Sd SaddleDev: Relative deviation of saddle from centre line

F FunctionType: 1 for a smooth function, 2 for piecewise linear oscillations, 3 for

pulse oscillations
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The functional form is defined as follows:

fðx; yÞ ¼ fbaseðxÞ þ oðxÞgðx; yÞ þ
y� 1

2

� �2
10

where

fbaseðxÞ ¼
ð1� aÞ 1þcosð

2px
c Þ

2 þ a xOc

ð1� bÞ 1þcosð
2pðx�cÞ
1�c Þ

2 þ b x > c

(

oðxÞ ¼ OhðjðF;xÞ þ 1Þ
2

gðx; yÞ ¼ 1� ð1� SrÞ exp
�ðy� SpðxÞÞ2

l

 !

jðF; xÞ ¼
cosðx1ðxÞÞ F ¼ 1
kðxÞ F ¼ 2
lðxÞ F ¼ 3

8<
:

kðxÞ ¼
x3ðxÞ x3ðxÞO1
2� x3ðxÞ 1 < x3ðxÞO3
x3ðxÞ � 4 3 < x3ðxÞO5

8<
:

lðxÞ ¼ �1 1þ 2Ow < x4ðxÞ < 5� 2Ow

1 otherwise

�

Derived constants Definition

l S2
w

4 logð100Þ

Zf
Or

2ðBþ1Þ

a 1� 1
ð1þLÞ

b 1
ð1þLÞ

c 1
ð1þBÞ

Derived functions Definition

x1(x) 2pxOr

x2(x)
4x1ðxÞ

2p þ 1

x3(x) 4 x2ðxÞ
4 �

x2ðxÞ
4

� �j k� �

x4(x) 4 x2ðxÞþ3
4 � x2ðxÞþ3

4

� �j k� �
þ 1

Sp(x)
Sd

2 cosð2pZf xÞ þ 0:5
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